skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hasselmo, Michael E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We develop a framework to learn bio-inspired foraging policies using human data. We conduct an experiment where humans are virtually immersed in an open field foraging environment and are trained to collect the highest amount of rewards. A Markov Decision Process (MDP) framework is introduced to model the human decision dynamics. Then, Imitation Learning (IL) based on maximum likelihood estimation is used to train Neural Networks (NN) that map human decisions to observed states. The results show that passive imitation substantially underperforms humans. We further refine the human-inspired policies via Reinforcement Learning (RL) using the on-policy Proximal Policy Optimization (PPO) algorithm which shows better stability than other algorithms and can steadily improve the policies pre-trained with IL. We show that the combination of IL and RL match human performance and that the artificial agents trained with our approach can quickly adapt to reward distribution shift. We finally show that good performance and robustness to reward distribution shift strongly depend on combining allocentric information with an egocentric representation of the environment. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Neurophysiological recordings in behaving rodents demonstrate neuronal response properties that may code space and time for episodic memory and goal-directed behaviour. Here, we review recordings from hippocampus, entorhinal cortex, and retrosplenial cortex to address the problem of how neurons encode multiple overlapping spatiotemporal trajectories and disambiguate these for accurate memory-guided behaviour. The solution could involve neurons in the entorhinal cortex and hippocampus that show mixed selectivity, coding both time and location. Some grid cells and place cells that code space also respond selectively as time cells, allowing differentiation of time intervals when a rat runs in the same location during a delay period. Cells in these regions also develop new representations that differentially code the context of prior or future behaviour allowing disambiguation of overlapping trajectories. Spiking activity is also modulated by running speed and head direction, supporting the coding of episodic memory not as a series of snapshots but as a trajectory that can also be distinguished on the basis of speed and direction. Recent data also address the mechanisms by which sensory input could distinguish different spatial locations. Changes in firing rate reflect running speed on long but not short time intervals, and few cells code movement direction, arguing against path integration for coding location. Instead, new evidence for neural coding of environmental boundaries in egocentric coordinates fits with a modelling framework in which egocentric coding of barriers combined with head direction generates distinct allocentric coding of location. The egocentric input can be used both for coding the location of spatiotemporal trajectories and for retrieving specific viewpoints of the environment. Overall, these different patterns of neural activity can be used for encoding and disambiguation of prior episodic spatiotemporal trajectories or for planning of future goal-directed spatiotemporal trajectories. 
    more » « less
  4. Abstract Behavioral data shows that humans and animals have the capacity to learn rules of associations applied to specific examples, and generalize these rules to a broad variety of contexts. This article focuses on neural circuit mechanisms to perform a context‐dependent association task that requires linking sensory stimuli to behavioral responses and generalizing to multiple other symmetrical contexts. The model uses neural gating units that regulate the pattern of physiological connectivity within the circuit. These neural gating units can be used in a learning framework that performs low‐rank matrix factorization analogous to recommender systems, allowing generalization with high accuracy to a wide range of additional symmetrical contexts. The neural gating units are trained with a biologically inspired framework involving traces of Hebbian modification that are updated based on the correct behavioral output of the network. This modeling demonstrates potential neural mechanisms for learning context‐dependent association rules and for the change in selectivity of neurophysiological responses in the hippocampus. The proposed computational model is evaluated using simulations of the learning process and the application of the model to new stimuli. Further, human subject behavioral experiments were performed and the results validate the key observation of a low‐rank synaptic matrix structure linking stimuli to responses. 
    more » « less